Coupling Mass Spectrometry with Optical Spectroscopy and Chemical Tests to Evaluate and Monitor Dissolved Organic Matter in Natural Waters

MARLA BIANCAA

MICHAEL GONSIORB, CARMEN CARTISANOA, ROSSANA DEL VECCHIOC, NEIL BLOUGHA

A DEPARTMENT OF CHEMISTRY AND BIOCHEMISTRY, UNIVERSITY OF MARYLAND, COLLEGE PARK, MARYLAND, USA;

B UNIVERSITY OF MARYLAND CENTER FOR ENVIRONMENTAL SCIENCE, CHESAPEAKE BIOLOGICAL LABORATORY, SOLOMONS, USA;

C EARTH SYSTEM SCIENCE INTERDISCIPLINARY CENTER, UNIVERSITY OF MARYLAND, COLLEGE PARK, MARYLAND, USA

What is DOM/Chromophoric DOM?

- DOM definition: Complex, heterogeneous mixture of thousands of dissolved organic compounds
 - 20 70% is chromophoric (CDOM)
- CDOM definition: portion of DOM that absorbs light in both the visible and UV wavelengths
- Complexity of the material makes it very hard to study and define

Why study DOM/CDOM?

 Marine DOM is one of Earth's largest carbon reservoirs

 Reactivity in the aquatic environment

Possible impacts on the global carbon cycle

Sutton, R.; Sposito, G. Environ. Sci. Technol. 2005, 39 (23), 9009–9015. Hedges, J. I, In Biogeochemistry of Marine Dissolved Organic Matter, 2002. Hedges, J. I. Mar. Chem. 1992, 39 (1-3), 67–93. Zepp, R. G. Photochem. Photobiol. Sci. 2007, 6 (3), 286. Golanoski, K. Environ. Sci. Technol. 2012, 46 (7), 3912–3920.

Coble, P. G. Chem. Rev. 2007, 107, 402-418.

Why study DOM/CDOM?

 Marine DOM/CDOM source and structure?

- Terrestrial? In-situ?
 - Use optical properties and MS

Collection: Sample Locations

Equatorial Atlantic
Ocean May-June 2009

Leguatorial Guines

Legua

Station ALOHA:
Depth profile (11 samples)

4 Locations: 5m and 1000m (6 samples)

2 Locations: River and Lower Bay (2 samples)

2 Reference Materials (from IHSS):

- Suwannee River Fulvic Acid (terrestrial)
- Pony Lake Fulvic Acid (microbial)

Optical Properties of CDOM

Reduction by Sodium Borodeuteride (NaBD₄)

Reduces carbonyl containing species

Aromatic ketones and aldehydes

and quinones

Loss of absorbance

NaBD/

 H_2O

R/H

MS coupled with reduction by sodium borodeuteride (NaBD₄)

- FT-ICR-MS: Produces unique mass markers
 - M + 3.0219n

Collection: Method Preparation and Extraction

Collection: MS Data Acquisition

- 12T ESI-FT-ICR MS (negative ion mode)
- Averaged 500 scans
 - mass resolution at 400,000 (at mass 400 m/z)

- S/N ratio > 10 obtained
- Mass accuracy < 0.2 ppm

Collection: MS Data Analysis

Pre-processing of raw peak list

- Subtract blank
- Remove multiply charged peaks

Assigning Molecular Formulae

- Specify error tolerance
- Element inclusions
- Mass range

Finding Reduced Peaks

- Algorithm identifies species that contain NaBD₄ reducible groups.
- Searches the reduced sample for M + 3.0219n m/z off the untreated peak list.

Results: Untreated

Results: Effects of Reduction

- O/C_{ava} ratios ~0.5
- SRFA,DERV, and DELB: H/C ratios < 1
- Open ocean samples (EAO and NPO) few assigned molecular formulae with
 H/C ratios < 1 and fewer < 0.5

Results: Effects of Reduction

DBE= c + 1 - h/2 + n/2

- Decreases with increasing distance from terrestrial sources
- Reduction occurring on higher DBE moieties

Results: Effects of Reduction

- Most reduction occurs on CHO only species
- The percent of reduced species decreases from terrestrial sources to off shore to ocean samples
- Open ocean surface samples show the least amount of reduction

Results: Optics and Reduction

- EAO 96 Congo River
 out flow and SRFA:
 Highest number
 of reduced species
- EAO and NPO similar amounts of reduced peaks and absorption loss upon reduction (excluding surface samples, possibly due to photobleaching)

Results: 500 Highest Intensity Peaks Assigned Molecular Formulae $(CHON_{0-1}S_{0-1})$

Summary:

- Combining all three techniques allows for a better understanding of the similarities/differences between CDOM/DOM samples
- All samples exhibit comparable absorption losses upon reduction, greatest over the visible range independent of location
- Terrestrial samples (untreated and reduced) show additional identified peaks at an H/C ratio <1 that are not observed in the open ocean
- Deep ocean waters from both EAO and NPO exhibit similar identified peaks (untreated and reduced)
- Open ocean and terrestrial samples, exhibit a common core of identified peaks at an H/C ratio >1

Acknowledgments

University of Maryland, College Park

University of Hawaii Marine Center

CBL: Dr. Michael Gonsior

Division of Chemical Oceanography

Research Group: Carmen Cartisano, Danielle Le Roux, Neil V. Blough, Rossana Del Vecchio Former Group members: Dan Baluha and Andrea Andrew Questions?